
S P E C I A L I S S U E

Statistical modelling of sea lice count data from salmon farms
in the Faroe Islands

H Gislason

Faculty of Science and Technology,

University of the Faroe Islands, N�oat�un 3,

FO-100 T�orshavn, Faroe Islands &

Fiskaaling - Aquaculture Research Station

of the Faroes, Við �Air 11, FO-430 Hvalv�ık,
Faroe Islands

Correspondence

Hannes Gislason, The Faculty of Science and

Technology, University of the Faroe Islands,

T�orshavn, Faroe Islands.

Email: hannesg@setur.fo

Abstract

Fiskaaling regularly counts the number of sea lice in the attached development stages

(chalimus, mobiles and adult) for the salmon farms in the Faroe Islands. A statistical

model of the data is developed. In the model, the sea-lice infection is represented by

the chalimus (or mobile) lice developing into adult lice and is used to simulate past and

current levels of adult lice—including treatments—as well as to predict the adult sea

lice level 1–2 months into the future. Time series of the chalimus and adult lice show

cross-correlations that shift in time and grow in size with temperature. This implies

in situ the temperature-dependent development times of about 56 down to 42 days

and the inverted development times (growth rates) of 0.018 up to 0.024 lice/day at

8–10°C. The temperature dependence D Tð Þ ¼ a1 T þ a2ð Þa3 ¼ 17;840 Tþð
7:439Þ�2:128 is approximated by D1 Tð Þ ¼ 105:2� 6:578T � 49 days at the mean

temperature 8.5°C—similar to Dcha Tð Þ ¼ 100:6� 6:507T � 45 days from EWOS

data. The observed development times at four sites for a year (2010–11) were 49, 50,

51 and 52 days, respectively. Finally, we estimate the sea lice production from fish

farms to discuss approaches to control the sea lice epidemics—preferably by natural

means. This study is useful for understanding sea lice levels and treatments, and for

in situ analysis of the sea-lice development times and growth rates.
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1 | INTRODUCTION

Modelling the host–parasite system of sea lice on farmed salmon is

motivated by the economic importance of the aquaculture industry

and the large costs of treatments against sea lice (Liu & Bjelland,

2014), as well as the environmental conservation interests in wild

salmon (Vollset et al., 2016). An extensive literature on modelling

the sea lice and salmon epidemiology using different types of mod-

els was recently reviewed (Groner et al., 2016). Examples include

modelling the host density effects on sea lice levels (Jansen et al.,

2012), space–time modelling of the spread between and within sal-

mon farms (Aldrin, Storvik, Kristoffersen, & Jansen, 2013), modelling

parasite dynamics on farmed salmon for conservation of wild sal-

mon (Rogers et al., 2013), deterministic modelling of infection pres-

sure based on lice monitoring data (Kristoffersen et al., 2014),

modelling resistance to chemotherapeutants (McEwan, Groner, Fast,

Gettinby, & Revie, 2015) and modelling sea lice dynamics in the

seasonally changing environment (Rittenhouse, Revie, & Hurford,

2016).

A revised life cycle for sea lice consisting of eight stages was

recently proposed (Hamre et al., 2013), which includes three free-liv-

ing planktonic stages: nauplius (I, II) and the infectious copepod stage

followed by five attached stages: chalimus (I, II), preadult (I, II) mobile

males and females and the adult males and females. The total gener-

ation time of sea lice depends on water temperature and is about

98 days at 7°C (Heuch, Nordhagen, & Schram, 2000). Under labora-

tory conditions, the adult female can live up to 191 days and pro-

duce up to 11 pairs of egg strings each containing a mean number

of 285 eggs at 7.2°C (Heuch et al., 2000). The nauplius and the

infectious copepod stages last about 7 and 12 days at 7°C, respec-

tively (Dalvin, 2016). This results in about 79 days (98 � 19) at 7°C

from the infection until the first pair of egg strings are developed.
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The Faroese salmon industry is troubled by high sea lice levels

leading to expensive treatments against sea lice. The Aquaculture

Research Station of the Faroes (Fiskaaling) regularly counts the num-

ber of sea lice in the attached development stages (chalimus, mobiles

and adult) for the salmon farms in the Faroe Islands. The lice-count-

ing regulations require counts to be made by Fiskaaling on each site

about every 14 days, where a sample of 10 fish are examined from

each cage. The previously permitted sea lice limit was a mean num-

ber of 2 adult females/fish, which has now been reduced to 1.5

adult females/fish.

The sea lice counts are reported to the Faroese Food and Veteri-

nary Authority and used by the aquaculture industry for timing treat-

ments against sea lice. Previously, the sea lice treatments were

mainly based on chemotherapeutants (e.g., Alphamax/Betamax, Sal-

mosan, Slice, Ektobann, Releeze and Interox Paramove/hydrogen

peroxide), but recently fresh water treatments and cleaner fish are

increasingly being used instead of chemotherapeutants.

To better understand and help reduce the sea lice levels, the sea

lice counts are also used for research at Fiskaaling. Sea lice research

at Fiskaaling includes in situ-based estimation (�a Norði, Simonsen, &

Patursson, 2016) and modelling (Kragesteen, 2016; Patursson,

Simonsen, Visser, & Patursson, 2017) of the density and dispersion

of the free-living stages (nauplius, copepod) of the sea lice to esti-

mate the sea lice self-infection and the external infection pressure

within and between sites.

A method was developed for estimating the salmon louse nauplii

production at fish farms (�a Norði et al., 2016). At the site Sundalagið,

Faroe Islands, plankton surveys were conducted around the farm with

a plankton net, and at different depths in a fish cage using a plankton

pump. The copepod density was low, and the highest observed cope-

pod density was 0.3 cop./m3—similar to the density found in open

waters. Nauplii dominated the planktonic stages, and the nauplii pro-

duction was estimated to 26–68 naup. female�1 day�1 at 7.8°C.

Patursson et al. (2017) applied multiple linear regression to rank

the exposure of Faroese salmon farms by their different physical

geography, freshwater exchange, and tidal dispersion currents lead-

ing to varying strengths of the self- and externally driven infection

pressure. Increased exposure was found to correspond to a lower

rate of self-infection, but could also increase the external infection

pressure (Patursson et al., 2017).

Kragesteen (2016) performed numerical simulations of the sea

lice dispersal between all salmon farms in the Faroe Islands. The

numerical model was based on tidal forcing and connectivity matri-

ces between the farms were constructed. The numerical results indi-

cated variable connection patterns between the farms—classified as

being main emitters, receivers or isolated. The infection time

between the farms was predicted to be within a few days up to

about 2 weeks (Kragesteen, 2016).

In this study, a statistical model of the sea lice count data was

developed to understand and simulate (1) the adult sea lice levels,

(2) the treatments against sea lice and (3) to help reduce the sea lice

levels. The development times from chalimus to adult female are

about 1–2 months in Faroese waters (6–11°C) as inferred from

EWOS growth curves for sea lice as a function of temperature.

Therefore, the chalimus counts can potentially be used to simulate

past and current levels of adult lice, and to predict the adult sea lice

level 1–2 months into the future. Additionally, time-series analysis is

used to investigate the sea lice dynamics, and to independently

check the in situ development times from chalimus to adult females

—to be compared with the development times derived from the

EWOS data (Myhr et al., 2009).

2 | MATERIALS AND METHODS

2.1 | Count data

The count data consist of time series of sea-lice counts in the differ-

ent development stages (attached, mobiles and adult) found on sal-

mon farms in the Faroe Islands. The counts are typically made at 2-

to 3-week intervals, where the sea lice on ten fish are counted from

each selected cage, and the overall mean count is derived for each

lice stage at the site.

Counts are made of both Lepeophtheirus salmonis (the salmon sea

lice) and Caligus elongatus, but the count data do not distinguish

between the chalimus stage of salmon sea lice and C. elongatus,

which are classified as one common category of attached lice.

2.2 | Statistical model

The principle behind the sea lice modelling (Figure 1) is based on the

assumptions that the number of adult sea lice mainly depend on:

• The variations in the attached chalimus lice infection from local

and remote sources of the free-swimming stages of sea lice.

• The different sea temperatures that lead to different develop-

ment times to adult lice.

• The accumulation of adult lice from the chalimus infections.

• The survival from chalimus to adult, which is a scaling factor

assumed to be constant pr. modelling.

In the model, a simulated sea-lice infection is represented by the

chalimus lice developing into adult lice that accumulate by an integra-

tion of their arrival probability (Figure 1). Similarly, the count data are

discrete samplings of the real infection and its accumulation to adult.

The adult counts at each ti are therefore estimated by a sum of chal-

imus counts c tj
� �

between t1 and tk\ti scaled by the survival (Fig-

ure 1, formula). The time tk is set below ti to account for the mean

development time ld between tk and ti that depends on the sea tem-

perature. For the Faroe Islands, the development times were inferred

from EWOS growth curves (Myhr et al., 2009) for sea lice as a func-

tion of sea temperatures in Norway (7–17°C). This was performed by

linear regression of a subset of the EWOS-development times for sea

temperatures (7–11°C) that are comparable with the sea temperatures

(6–11°C) observed in the Faroe Islands. The obtained linear regression

formula is then used to estimate the daily development times for sea

lice in the Faroe Islands from daily sea temperatures at one site
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(location of Nesv�ık, 2007, Faroe Islands), which are used as model tem-

peratures for all the modelled sites in the Faroe Islands.

The statistical modelling was performed with R/RStudio. The

counts of chalimus lice are used to simulate past and current counts

of adult lice, and to predict the adult sea lice counts one develop-

ment time into the future. For each count date ti in the data series

of adult lice a tið Þ, we construct the model estimate m tið Þ of adult lice
by applying a cumulative summing function to the past chalimus lice

c tj
� �

(Appendix A).

This is performed by including in the sum all the chalimus lice

c tj
� �

for the count dates tj in the interval ½t1; tk\ti�, where t1 is the

first count date in our series and tk is the last count date to be

included to give all the chalimus lice at tk enough time to develop

into adult lice at ti (Figure 1).

How far tk should be set below ti depends on the daily develop-

ment times between tk and ti that vary with the changing sea tem-

perature. We set tk ¼ ti � dfld � sf
ffiffiffiffiffi
ld

p� �
, where ld is the mean

development time between tk and ti and
ffiffiffiffiffi
ld

p
is the standard devia-

tion. The df factor may be used to adjust the development times if

they are inaccurately estimated and the sf factor is the number of

standard deviations used to account for the variability of the devel-

opment times. Application of a single parameter may also account

for the variability (Appendix B).

Finally, a fitted survival factor is applied to fit the model esti-

mates to the past adult lice data. The possible presence of C. elonga-

tus in the chalimus stage of the sea lice counts affects the survival

factor, which we therefore interpret with caution. This caution is

especially relevant when large levels of mobile and adult stages of

C. elongatus are observed in the sea lice counts indicating that

C. elongatus may distort the chalimus counts. In these cases, we can

still apply our chalimus-based model, but the survival factor of chal-

imus will tend to be underestimated.

2.3 | Modelling from mobiles

The mobile stages of L. salmonis and C. elongatus are distinguishable.

Therefore, to avoid the survival-factor issue of the model based on

chalimus, a modelling from mobiles has also been implemented. The

modelling from mobiles is analogous to the modelling from chalimus.

The main difference being that a shorter development time is applied

that also leads to a shorter prediction interval into the future.

2.4 | Model parameters

The main modelling parameters are as follows: the sea lice data file,

the sea lice model type (chalimus or mobiles) and the sea lice natural

survival (Table 1). Optionally, we can modify the development and

standard deviation factors from their default values (df ¼ 1, and

sf ¼ 3). The scaling factor related to natural survival was fitted to

obtain the lowest errors for a given set of the development and

standard deviation factors. As the chalimus counts include both

sexes—and may include distortion from C. elongatus—while the

adult counts only represent adult females of salmon sea lice, the

scaling factor of 0.5 corresponds roughly to a survival of 100%.

Optionally, we can simulate sea lice treatments by selecting the

timing (data point) of treatment and simulate the treatment effect

F IGURE 1 The model structure given a simulated infection probability c tð Þ of chalimus lice (bottom panel) with four peaks each
contributing 0.25 (25%) to the total infection (100%). The adult lice peaks (middle panel, dashed curve) arrive one development time later and
accumulate (top panel, dashed curve) to the model estimate m tið Þ. It is an integration of the arrival probability of the adult lice a tð Þ between t1
and ti that increases to 1 (100%) as the four infection peaks develop into adult lice—assuming all survive. For count data, a sum of chalimus
counts c tj

� �
between t1 and tk\ ti scaled by the survival is used (top panel, formula). The time tk is set below ti to account for the mean

development time ld between tk and ti that depends on sea temperature, and tk ¼ ti � dfld þ sf
ffiffiffiffiffi
ld

p
(bottom panel, annotations) is used to

adjust the timing of the lice accumulation (df ¼ 1, sf ¼ 0; 3 for dashed and dotted curves, respectively)
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between 0 and 1 (0% and 100%). When applied, the treatment simu-

lates that a percentage of the adult sea lice are removed correspond-

ing to the treatment effect, while the chalimus (or mobile) lice are

assumed to be more or less unaffected by the treatment. The sea lice

simulation is assumed applicable nearly independently of the treat-

ment method, as most treatments are not very effective against the

younger lice stages. However, if a treatment also removes the younger

lice stages, then it is not simulated in the current version of the model.

The remaining input parameters of the user interface (Appendix

A) serve as options to filter the input data set, to switch the predic-

tion into the future on or off, or selecting which tables to output.

In the end, the performance of the model is demonstrated by

simulations of 6- to 12-month-long time series of adult sea lice

counts for different farming sites and years in the Faroe Islands.

2.5 | Time-series analysis

For independent checks of the development times that we used in

the statistical modelling, a time-series analysis was applied to the

count data from different sites used for salmon aquaculture in the

Faroe Islands (Appendix C).

The results to be presented later will suggest that the mean time

differences at lag �3 can be used to infer the mean development

time from chalimus to adult lice.

The time-series methodology was initially only used on the full

length of the given data series of lice counts at each site. However,

time series for different sites usually cover different periods of time,

and are therefore not completely comparable as they cover different

seasonal temperature regimes.

An approach to better compare cross-correlation plots across

sites is therefore to restrict the time series to the same time period,

for example, a whole year. This should probe similar temperature

regimes at each site, and we use this approach to estimate the mean

development time during a complete year.

Another approach is to generate multiple subsets of the time ser-

ies to study different periods of the year, and hence probe slightly

different temperature regimes (Appendix C).

The lagged correlations between chalimus and adult lice provide

estimates of the development times between the lice stages, which

we compare with the corresponding development times inferred

from the EWOS growth curves.

The time-series analysis of the chalimus and adult lice are also used

to derive the three parameters ða1; a2;a3Þ in the temperature-depen-

dence formula used by Stien, Bjørn, Heuch, and Elston (2005):

D Tð Þ ¼ a1 T þ a2ð Þa3—using the previously described subsets of time

series—each probing a slightly different temperature regime. Data of

mean time differences at lags versus the corresponding mean tempera-

tures are plotted and the resulting data used to find the parameters

(Appendix D).

The chalimus lice develop into adult lice in the mean develop-

ment time. Therefore, as usual in both infectious disease and para-

site modelling (Rittenhouse et al., 2016; Vynnycky & White, 2011),

the inverted development time (1/Development) is interpreted as a

mean growth rate (arrival rate) of lice/day, and we show how this

growth rate changes with the mean sea temperature. Further, we

study the size of the cross-correlations in two plots, one versus tem-

perature and one versus the inverted development time.

3 | RESULTS

The main results of this study are presented in two parts: the first

part (Figures 2–6) presents the development times inferred from

EWOS data (Figure 2) and the modelling of the adult lice from the

TABLE 1 The model parameters

Parameters Description Values Default

data Sea lice count data Excel files NA

model Sea lice model type Chalimus or

mobiles

Chalimus

lived Proportion transformed to

adult females

0–1

(expected

<0.5)

1

df Development factor (option) 0–1.5 1

sf St. deviation factor (option) �3 to 3 3

treat Data point of treatment

(option)

Data index 0 (off)

effect Proportion removed

(if treatment)

0–1 0 (off)

F IGURE 2 The development time (black points) to adult females
inferred from EWOS growth curves similar to Myhr et al. (2009) and
the linear regression (blue lines) for different sea temperatures from
the lice stages copepod, chalimus and mobiles: Dcop Tð Þ ¼ 125:1�
7:993T, Dcha Tð Þ ¼ 100:6� 6:507T and Dmob Tð Þ ¼ 56:55� 3:786T
(all three R2 � 1 and slope p-values = 1e-6, 2e-7, 5e-7) [Colour figure
can be viewed at wileyonlinelibrary.com]
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F IGURE 3 The sea-lice counts (black points) of chalimus, mobiles
and adult lice and the modelling of adult lice (dark and light grey
lines) from chalimus and mobile lice, respectively, for site 1, 2010–
11, n = 20 fish in each count. For both models, the development
and standard deviation factors are 1 and 3, respectively, and the
natural survival factor is 0.1

F IGURE 4 The sea-lice counts and the modelling of adult lice
from chalimus and mobile lice for site 2, 2012, n = 20 fish in each
count. The development factor is 1 for both models, and the
standard deviation factors are �2 and 3 and the survival factor is 1
and 0.1 for the chalimus and mobile models, respectively. A
treatment is simulated at 23 August 2012 (data point 15) with a
treatment effect of 0.85

F IGURE 5 The sea-lice counts and the modelling of adult lice
from chalimus and mobile lice for site 1, 2012–13, n = 20 fish in
each count. The development and standard deviation factors are 1
and 3 for both models, and the survival factor is 0.65 and 0.1 for
the chalimus and mobile models, respectively. A treatment is
simulated at 9 April 2013 (data point 16) with a treatment effect of
0.90

F IGURE 6 The sea-lice counts and the modelling of adult lice
from chalimus and mobile lice for site 1, 2016–17, n = 140–190 fish
in each count. The development and standard deviation factors are
1 and 3 for both models, and the survival factor is 1 and 0.84 for
the chalimus and mobile models, respectively. A treatment is
simulated at 20 January 2017 (data point 14) with a treatment
effect of 0.35
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attached chalimus and mobile stages (Figures 3–6), and the second

part (Figures 7–12) presents the time-series analysis. Finally, for the

purpose of the discussion, one extra plot (Figure 13) is presented,

which shows a nonlinear relation between the adult female counts

and the number of released sea lice eggs fish�1 day�1.

3.1 | Development times used in the modelling

The development times obtained from EWOS data for the three lice

stages, copepod, chalimus and mobiles, decrease linearly with the sea

temperature (Figure 2). As the modelling is made from the attached

stages of chalimus and mobiles, the development times used are

Dcha Tð Þ ¼ 100:6� 6:507T for the modelling from chalimus lice and

Dmob Tð Þ ¼ 56:55� 3:786T for the modelling from mobile lice.

The modelling plots to be presented show three panels of the

sea lice count data: one for each lice stage of chalimus, mobiles and

adult lice versus count time together with the modelling (solid lines)

shown in the adult panel (Figures 3–6) for the obtained model

parameters (Table 2).

3.2 | Modelling from chalimus

The count data for site 1 (2010–11), site 2 (2012) and site 1 (2012–

13) are typical for this time periods, in which typically only a sample

of 20 fish were examined from each cage, and this leads to relatively

large error bars on the data (Figures 3–5) as compared to the

increased number of fish (140–190) in each counting (Figure 6).

Another common characteristic is the behaviour of the chalimus

counts, which jump up and down from the 0-count baseline of no

signal, while the adult counts tend to increase (accumulate) with

time, and do not come down again unless a treatment is performed.

Site 1 (2010–11) shows a strong chalimus signal in November

2010, with smaller signals between December 2010 and April 2011

(Figure 3). Around December 2010, or roughly 1 month after the

first chalimus signal, the adult lice signal starts to grow. In this case,

however, the growth in the adult sea lice counts tends to level off at

about 0.5 lice/fish, because the chalimus signal is very low from

May 2011.

The results of the modelling from the chalimus to the adult stage

are shown as dark grey lines in the adult panel of the plots, which in

general capture the tendency of the data within the accuracy of the

counting’s and the model. The prediction effect of the model is illus-

trated by the lines that extend beyond the last count data due to

the development time from the last chalimus counts into the future

(Figures 3-6).

An example of modelling from chalimus for site 2, 2012, shows

an increase in the adult lice until about 1 lice/fish, where they sud-

denly drop down to about 0 in late August 2012, before rising again

to a higher level of about 2.5–3 lice/fish around one and a half

month later. A treatment is simulated at 23 August 2012, with a

treatment effect of 0.85 (85%) for removing the adult lice, assuming

no effect on the chalimus lice (Figure 4).

This behaviour is characteristic: that the adult signal sometimes

shows a rapid increase soon after a treatment to similar or even

higher values than before the treatment. This can mainly be

explained from the chalimus count, which shows a large signal

(1.75 lice/fish) about the same time as the treatment is performed

(Figure 4). This chalimus signal contributes to the large increase in

both the mobile and the adult counts shortly after treatment,

because the treatments applied are less effective against the chal-

imus lice, which can grow into new mobiles and adults in a time cor-

responding to the development times (Figure 2). In this case, the

mobile lice already present at the time of treatment are possibly also

contributing (Figure 4), as they seem largely unaffected by this par-

ticular treatment and are virtually free to grow into adults.

Another example from site 1, 2012–13, show the adult lice

increase from low levels in mid-June to mid-September 2012, up to

1.65 lice/fish on 1 March 2013. On 9 April 2013, the adult lice have

decreased to 0, followed by a new increase to 0.55 lice/fish on 30

May and 0.8 on 13 June 2013. A treatment is simulated at 9 April

2013, with a treatment effect of 0.90 (Figure 5).

Here, we also see an increase of the adult count shortly after treat-

ment, but to a lower level than before the treatment. Again, this can

mainly be explained by the chalimus counts, which are at moderate

levels at the point of treatment (Figure 5). This leads to a more moder-

ate increase in the adult lice counts shortly after treatment (as com-

pared to Figure 4). This particular treatment seems to remove both

the adult lice and most of the mobile lice. Consequently, mainly chal-

imus lice at the time of treatment are left to survive into new mobiles

and adults.

TABLE 2 Parameter values for Figures 3–6

Site From To Figures n Model Lived df sf Treat Effect Date

1 2010-09-23 2011-11-08 3 20 Chalimus 0.10 1 3 0 0.00 NA

1 2010-09-23 2011-11-08 3 20 Mobiles 0.10 1 3 0 0.00 NA

2 2012-02-02 2012-10-25 4 20 Chalimus 1.00 1 �2 15 0.85 2012-08-23

2 2012-02-02 2012-10-25 4 20 Mobiles 0.10 1 3 15 0.85 2012-08-23

1 2012-06-14 2013-06-13 5 20 Chalimus 0.65 1 3 16 0.90 2013-04-09

1 2012-06-14 2013-06-13 5 20 Mobiles 0.10 1 3 16 0.90 2013-04-09

1 2016-07-08 2017-02-15 6 140–190 Chalimus 1.00 1 3 14 0.35 2017-01-20

1 2016-07-08 2017-02-15 6 140–190 Mobiles 0.84 1 3 14 0.35 2017-01-20
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The development and standard deviation factors (Table 2, df, sf)

were at their default values 1 and 3 (Figures 3, 5 and 6). The devel-

opment and standard deviation factors were usually kept at 1 and 3,

respectively, during modelling, but the standard deviation factor of

�2 was used for the chalimus model in one case to fit the timing of

the large increase in adult counts shortly after treatment (Figure 4).

This corresponds to a slower development than expected and may

also be modelled by setting the standard deviation factor to 0 and

using a development factor of about 1.28 (Appendix B).

Remember that the scaling factor of 0.5 is assumed to corre-

spond roughly to a survival of 100% for adult females, because the

scaling is applied to a sum of chalimus counts that include both

sexes, while the adult counts only include females. For the presented

examples of chalimus modelling, we found scaling factors of 0.1,

0.65 and 1 (Table 2, lived), and in other examples (not shown) most

scaling factors were between 0.6 and 1. The lowest scaling factor of

0.1 may correspond to about 20% survival for adult females if we

neglect any distortion of the chalimus counts. The scaling factors

exceeding 0.5 up to 1 may indicate that the number of chalimus lice

have been underestimated by up to 50%, as they are more difficult

to find than the larger adult females.

In any case, the scaling factors related to survival should be inter-

preted with great caution. Besides the model assumptions, the difficul-

ties in counting the small chalimus lice and the possible presence of

C. elongatus in the chalimus stage may affect the scaling factor.

3.3 | Modelling from mobiles

The modelling based on mobiles is also implemented (Figures 3–6,

light grey lines), which gives similar fits although the modelling from

chalimus (Figures 3–6, dark grey lines) is slightly better fitted to the

data.

An example of lice counts for site 1, 2016–17, has much smaller

error bars compared to the previous plots (Figures 3–5) because of

the larger number of fish in each counting (Figure 6). The adult counts

increase up to about 1.75 lice/fish at which point a treatment is

applied. The treatment does not seem to affect neither the chalimus

nor the mobile lice, and only moderately the adult lice. This may indi-

cate resistance to the treatment (Figure 6). The treatment is simulated

at 20 January 2017, with a treatment effect of 0.35. Again, the effect

of the treatment is short-lived, and about one and a half month after

the treatment the adult sea lice level is back at the sea lice limit of

1.5 lice/fish. Here, both the chalimus and the mobile lice are at mod-

erate levels at the time of treatment, but combined with the ineffec-

tive treatment, these levels are high enough to restore the adult count

back to its level before treatment in about one development time.

The modelled values from mobiles are generally in good agreement

with the adult counts as observed from the plots (Figures 3–6). A sum-

mary of the errors between the n = 15 pairs of the adult counts and

the modelled values results in: �0.33 (Min.), �0.06 (1st Qu.), �0.009

(Median), �0.007 (Mean), 0.08 (3rd Qu.) and 0.19 (Max) lice/fish; and

the standard deviation was 0.13 (Figure 6). These errors are smaller

than errors obtained for Figures 3–5, but similar to the errors for the

corresponding modelling from chalimus for this same site and the

same data (Figure 6). Therefore, the better performance is likely due

to the better data quality from the increased number of fish (140–190)

in each counting (Figure 6), as compared to only 20 (Figures 3–5).

The errors are fairly symmetrically distributed about mean 0 with

the standard deviation of 0.13, and the maximum numerical error

was 0.33 lice/fish (Figure 6). Assuming a nearly normal distribution

of errors about mean 0, all errors should be within �3 SD, which in

this case is about �0.4 lice/fish. This error margin is the maximum

prediction errors of the model for this case, while 95% prediction

intervals for the errors are about �0.3 lice/fish.

For the presented examples of modelling from mobiles, we found

scaling factors of 0.1 and 0.84 (Table 2, lived). In one case, the scaling

factor of 0.1 is the same as for the modelling from chalimus (Figure 3),

while in two cases the scaling factor of 0.1 from mobiles is much lower

as compared to 1 and 0.65 from chalimus (Figures 4–5). This suggests

that the survival of chalimus is overestimated for Figures 4–5, proba-

bly due to difficulties in counting the small chalimus lice. In one case,

the scaling factor of 0.84 from mobiles is above 0.5 and slightly lower

than 1 from chalimus (Figure 6), indicating distorted scaling factors

that should be treated with caution. The common scaling factor of 0.1

from mobiles (Figures 3–5) may indicate a survival of about 20%

between the mobile and adult female stages in these cases.

A test to predict the sea-lice levels on this (and another) site

used by a fish farm was performed on 5 January 2017. Only having

the sea lice data until 8 December 2016, for the site, the model pre-

dicted the lice levels in early January to be 1.5 lice/fish (Figure 6).

The fish farm reported back that they just made a new counting of

1.7 lice/fish on 4 January 2017, confirming the prediction within an

error of 0.2 lice/fish. For the other site (not shown), by only having

the sea-lice data until 12 December 2016, for that site, the model

predicted the lice levels in early January to be 0.75 lice/fish. Here,

the company reported back that they made a new counting of

0.57 lice/fish on 4 January 2017, also confirming the prediction

within an error of 0.2 lice/fish. The purpose of this test was primar-

ily to estimate the difference in survival at these two sites, in which

the later site with the counting of 0.57 lice/fish in early January

used cleaner fish in most sea cages in addition to thermalizing treat-

ments, while these treatments were much less used in the former

site (Figure 6). The results from the fitted scaling factor of about

0.84 and 0.1 suggest a very different survival for these sites. As the

modelling in this test was performed from mobiles, the scaling factor

should ideally be less inflated by C. elongatus and by the difficulties

in counting the small chalimus lice. However, the scaling factor

above 0.5 indicates some distortion for this case (Figure 6).

3.4 | Time-series results

We now turn to the second part of the results regarding the time-

series analysis (Figures 7–12). The mean time differences versus

mean temperature between lagged time series of chalimus lice and

adult lice for four sites in Faroe Islands, 2009–11, are compared with

the EWOS-inferred development times from chalimus to adult.
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Multiple subsets of the time series are used to find the mean time

differences at different mean temperatures. The time differences for

lags �4 to 0 with cross-correlations (ccf) between chalimus and adult

lice (ccf-lag mapped to point colour, ccf-value mapped to point size)

suggest that the EWOS-development times Dcha Tð Þ are similar to the

mean time differences at lag �3 (Figure 7).

This plot indicates variability in both the mean time differences

and in the ccf-values with temperature. For site A, the only signifi-

cant correlations are found at lag �3 at the lowest temperatures

down to about 7.8°C. With increasing temperature, other correla-

tions are observed for site A: first at lag �3 and �2, and then for

lag �3, �2, �1 and 0 at the temperature of 9.5°C. Site B is

F IGURE 7 Mean time differences versus mean temperature between lagged time series of chalimus lice as compared to the time series of
adult lice, for four sites in Faroe Islands, 2009–11. The plotted time differences are for lags �4 to 0 with significant cross-correlations between
chalimus and adult lice (ccf-lag mapped to point colour, ccf-value mapped to point size). Multiple subsets of the time series are used to find the
mean time differences at different mean temperatures. The temperature dependence is indicated by best-fit linear regression (blue lines). For
comparison, the chalimus to adult development time inferred from EWOS is also shown (black line), which are similar to the mean time
differences at lag �3 [Colour figure can be viewed at wileyonlinelibrary.com]
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different, as the only significant correlations for this site are at lag

�3 and �4. Site C is mainly dominated by correlations at lag 0 for

the lowest temperatures down to about 7.2°C, while at about 8.5°C

additional correlations are at lag �4 and �3, and at 9.5°C they are

observed at lags �4, �3, �2, �1 and 0. Also, most of these correla-

tions seem to increase with temperature, although the correlation at

lag 0 seems to be smallest at the highest temperatures larger than

9.3°C. Finally, site D shows significant correlations at lag �1 and 0

at the lowest temperature about 8.2°C, and at lag �4, �3, �2, �1

and 0 for 8.5°C. The correlation at lag �2 disappears at higher tem-

peratures, while the others remain.

In general, the ccf data are complex and challenging to interpret.

Sometimes, significant correlations are observed for positive lags,

either only at positive lags, or in addition to the correlations at nega-

tive lags. Occasionally, when looking at the evolution of the correla-

tions with time, the first significant correlations are observed at

positive lags, then later at negative lags, to finally be observed at

both negative and positive lags.

Statistics (counts) of the correlations at the four sites in Faroe

Islands, 2009–11, describe the number of correlations for both posi-

tive and negative lags. Cross-correlation at large lags are typically

hard to detect and the largest lags we observed were found at �7

and 6 for site C and A, respectively (Figure 8). For lag < 0, the lar-

gest count of correlations is found for lag �3 for all four sites (Fig-

ure 8). For site A and D, the number of correlations is maximum for

lag �3. For site B, the largest counts are relatively similar at lag �3

and lag 4, which has the maximum count. Site C has the largest

number of correlations at lag 0, followed by the correlations at lag

�3.

Considering densities of counts larger than 5%, the main part of

the correlations are found at lags �3, �2, 3, and 4 (site A), �4, �3,

1 and 4 (site B), �3, �1, 0 and 3 (site C), �4, �3, �2, �1, 0 and 2

(site D). Hence, the number of lags with count densities larger than

5% is 4 for the sites A–C and six for site D. Considering all the

counts (Figure 8), the number of lags with correlations is ten (site A),

four (site B), eight (site C) and seven (site D).

The counts and number of lags with significant correlations (Fig-

ure 8) is not fully understood. However, one possible suggestion is

that the correlations at different lags are caused by correlations of

the adult lice counts with series of subpopulations of chalimus lice

generated by the 10–11 egg strings laid by an adult female in its life-

time of about 191 days (Appendix C; Figure 12).

The temperature-dependent development time (Figure 9a)

inferred from the mean time difference at lag �3 in the lagged cor-

relations between chalimus and adult lice is modelled by the formula

(Appendix D):

D Tð Þ ¼ a1 T þ a2ð Þa3 ¼ 17;840 T þ 7:439ð Þ�2:128:

D Tð Þ tries to capture the curvature of the temperature dependence.

However, the curvature of the data seems a bit stronger than pre-

dicted by this relation. To compare with the linear formula derived

from EWOS data, the first-order Taylor polynomial D1 Tð Þ was

derived. At the mean temperature 8.5°C in the Faroe Islands, D Tð Þ is
approximated by:

D1 Tð Þ ¼ 105:2� 6:578T:

D1 Tð Þ predicts a mean development time of 49 days, which is similar

to the 45 days predicted by Dcha Tð Þ ¼ 100:6� 6:507T from EWOS

data. Note that the slope of D1 Tð Þ and Dcha Tð Þ are almost identical,

so the difference of about 4 days between these two predictions

stays constant.

We also present the inverted development times as the rate

1/Development (Figure 9b). In this case, only a smoothed curve is

plotted, instead of also inverting the D Tð Þ, D1 Tð Þ and Dcha Tð Þ rela-

tions. This plot illustrates how the arrival rate increases with tem-

perature: initially a fast increase between about 8 and 8.75°C

followed by a change in curvature to a more moderate increase

with temperature as the temperature approaches 10°C. The mean

temperatures in the Faroe Islands do not go much beyond 10°C,

so the arrival rate of nearly 0.024 lice/day at 10°C may be

regarded as the maximum rate. The mean yearly rate of

about 0.021 lice/day is found at 8.5°C. These rates are in good

agreement with population growth rates obtained from the slope

of log-linear plots of salmon lice over time (Patursson et al.,

2017).

The size of the cross-correlations between chalimus and adult

lice at site 2, Faroe Islands, 2009–11, show linear associa-

tions between ccf-value and temperature (Figure 10a; slope

p-value = 3e-22, R2 = 0.72), and between ccf-value and the arrival

rate 1/Development (Figure 10b; slope p-value = 1e-17, R2 = 0.62).

In this plot, the significance limit for the ccf-values was raised a bit

by subtracting three na-values in the differences at lag �3 from the

denominator of �ciline � �1:96=
ffiffiffi
n

p
(Appendix C).

Therefore, 77 points are included in this analysis (Figure 10)

as opposed to using all the 96 significant points, if not subtract-

ing the three na-values. This change was not required to estab-

lish the linear associations—it only raises R2. The linear

association between the ccf-values and temperature, and

between the ccf-values and arrival rate is not surprising, but

confirms our trust in these correlations. Apparently significant,

but spurious cross-correlations are known to happen in time-

series analysis, for example, if both time series are autocor-

related. However, it seems unlikely to find such clear and

biologically meaningful associations if we were tricked by spuri-

ous correlations.

The cross-correlations at four sites over a whole year (2010–11)

suggest very similar development times: 49, 50, 51 and 52 days,

respectively, inferred from the mean time differences at lag �3 (Fig-

ure 11). This is because the mean sea temperature is similar

between Faroese fjords in the same year at about 8.5°C. Also, the

ccf-values at lag �3 are similar at about 0.5–0.6 for site A, B and D

as expected from Figure 10a for temperatures of 8.5°C, while the

ccf-value at lag �3 is somewhat lower (about 0.4) for site C.

Remember that the observed variability in Figure 10 was obtained

after raising the confidence limit for significant correlations. Some
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larger variability in the ccf-values is therefore expected for such low

correlations as observed at lag �3 for site C at 8.5°C.

These cross-correlation plots were not selected to present the

strongest correlations, which occur at higher temperatures, but they

were meant to present cross-correlation plots for a complete year

(Figure 11). At higher temperatures, the ccf-value at lag �3 for site

C increased to above 0.6 and was similar in size to the correlation at

lag 0 (plot not shown). Similarly, the cross-correlations at the other

sites increase with temperature, as expected from Figure 10a. At

higher temperatures, the correlations just below the significance limit

tend to increase above the limit, for example, so we observe cross-

correlations at both positive and negative lags for site A and D.

3.5 | Reproduction

Stochastic simulation modelling of the adult female levels based

on Poisson distributions suggests a nonlinear relation between the

adult female level and the number of adult females that

F IGURE 8 Statistics (counts) of the significant lagged correlations for the multiple subsets of the time series used to find the mean time
differences at different mean temperatures at four sites in the Faroe Islands, 2009–11. In this plot, both negative and positive lags are
included. Significant correlations are observed for both positive and negative lags. For lag < 0, the largest count of correlations is observed for
lag �3
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reproduce; for example, for the average lice count of 0.5 adult

females per fish, 40%–60% of adult females reproduce, while at

1.5 adult females per fish, 80%–90% of the females reproduce

(Stormoen, Skjerve, & Aunsmo, 2013). A nonlinear relation

between the adult female level and the number of released sea

lice eggs per fish per day is therefore presented (Figure 13) for

use in the Discussion section.

Recall that under laboratory conditions, the adult female can live

up to 191 days and produce up to 11 pairs of egg strings each con-

taining a mean number of 285 eggs at 7.2°C (Heuch et al., 2000),

F IGURE 9 Development times (a) and inverted development times 1/Development (b) for chalimus to adult females (open points) versus
temperature for site 2, Faroe Islands, 2009–11. The in situ development time is inferred from the mean time difference at lag �3 in the lagged
correlations (ccf) between chalimus and adult lice. The three lines in (a) are as follows: (1) the modelled temperature dependence for this site
(solid line: D Tð Þ ¼ a1 T þ a2ð Þa3 ¼ 17;840 T þ 7:439ð Þ�2:128, (2) the first-order Taylor polynomial approximation at the mean temperature
(dashed line: D1 Tð Þ ¼ 105:2� 6:578T) and (3) the temperature dependence inferred from EWOS (dotted line: Dcha Tð Þ ¼ 100:6� 6:507T). A
linear regression for plot (b) slope p-value = 1e-30, R2 = 0.86, is not shown, as the relationship seems curved and better fitted with the
smoothed (blue) curve [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 Cross-correlations between chalimus and adult lice at site 2, Faroe Islands, 2009–11. Plot (a) and (b) show the significant ccf-
values at lag �3 versus mean sea temperature and versus 1/Development, respectively, for which development in (b) are the mean time
differences at lag �3. Linear regression lines (blue) show significant linear relationships: (a) slope p-value = 3e-22, R2 = 0.72 and (b) slope p-
value = 1e-17, R2 = 0.62 [Colour figure can be viewed at wileyonlinelibrary.com]
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thus producing up to 2 9 285 9 11 = 6,270 eggs, that is, on aver-

age 6270/191 (eggs adult female�1 day�1).

Given the middle reproduction curve by Stormoen et al. (2013)

and denoting it rðafÞ, it is asymptotically limited by r(af) ≲ 1 for

increasing af (Figure 13a, concave curve). Denoting the lice level af

(adult female/fish) in the Faroe Islands, each salmon fish releases on

average: Se afð Þ ¼ ð6270=191ÞrðafÞaf � 32:8rðafÞaf (eggs fish�1 day�1)

at 7.2°C. Se ranges between 0 and about 60 (eggs fish�1 day�1) for

the adult lice levels between 0 and 2 (Figure 13b); for example, for the

lice counts of af = 0.1, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0 (adult female/

fish), each salmon fish releases on average Se afð Þ = 0.33, 2.1, 8.2, 15,

24, 42 and 59 (eggs fish�1 day�1), respectively.

Consider the gain term r(af)af, which is asymptotically limited by

r(af)af ≲ af for large af and approximated by rðafÞaf � a2f for small af

(Figure 13a, convex curve). If rðafÞaf [1, it amplifies the number of

released eggs per fish per day, and if rðafÞaf\1 the output is

reduced, as compared to the unamplified number of

32.8 eggs fish�1 day�1 for a reproductive adult female at 7.2°C

(rðafÞaf ¼ 1Þ. The adult female lice count af should always be kept

small (<0.5 adult females/fish) to let the quadratic term rðafÞaf � a2f

F IGURE 11 Lagged correlations between time series of chalimus lice as compared to the time series of adult lice for four sites in Faroe
Islands. The labelled mean time differences are for lags with significant correlations (ccf). This plot covers a whole year (2010–11) to find the
mean development time for a full year, which is inferred from the mean time differences of 49–52 days at lag �3 [Colour figure can be
viewed at wileyonlinelibrary.com]
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for small af reduce Se afð Þ much below 32.8 eggs fish�1 day�1; for

example, for af ¼ 0:4; 0:2 and 0.1, Se afð Þ is reduced to 16%, 4% and

1% of 32.8 eggs�1 fish�1 day�1, respectively.

The mean number Fe of eggs/day released by a farm with n num-

ber of fish is similarly estimated by: Fe af; nð Þ ¼ nSe afð Þ ¼ 32:8 nrðafÞaf
eggs/day at 7.2°C. Note that Fe contains the co-amplifying factors

nrðafÞaf; for example, for a fish farm with a million fish, Fe will range

between 0 and about 60 million eggs/day for adult lice levels between

0 and 2 (adult female/fish).

4 | DISCUSSION

The sea lice parasite on farmed salmon is one of the major unsolved

challenges to the aquaculture industry. The high sea lice levels lead

to expensive treatments and an increased handling inflicting stress

on the fish. A decreased growth and increased losses of fish may be

observed. In the worst-case scenario, the stressed fish may become

less resistant to outbreaks of various fish diseases. Environmental

issues are also at stake. The potential spread of sea lice to wild sal-

mon, sea trout and other marine species and the increased use of

chemotherapeutants are two of the main concerns. The recent use

of cleaner fish combined with various forms of water treatments is

better for the environment. However, these treatments are costly

and may still stress the fish.

The aim of this study was to develop a statistical model of the

sea lice data in order to understand and simulate the adult sea lice

levels, and the ineffective treatments previously used against sea

lice. A better understanding could help us reduce future sea lice

levels. The focus was on modelling data sets from sea lice surveys at

Faroese salmon farms. A time-series analysis was applied to study

lagged correlations in the count data to infer the sea lice dynamics

on salmon farms, for example, the temperature dependence of such

important characteristics as the sea lice development times and the

arrival rates.

A statistical model of the sea lice data was developed that

reproduces the general trends in past sea lice counts and pre-

dicts future sea lice levels 1–2 months into the future (Fig-

ures 3–6). The predictions into the future were based on the sea

lice development times from chalimus to adult, which depend on

the sea temperature (Figure 2). The model describes how lice

infections accumulate from the young lice into adult lice, and

how the adult lice counts tend to grow until lice treatments are

applied; reducing the sea lice level (Figures 4–6). However, the

effect of the treatments is typically short-lived, and within 1–

2 months, the sea lice return, sometimes even to higher levels

than before the treatment (Figure 4). This is mainly explained by

high chalimus counts at the time of treatment. The chalimus lice

are less affected by the treatment and grow into new adults in

one development time.

The modelling from chalimus is sometimes affected by C. elonga-

tus not being distinguished from the attached chalimus stage of sal-

mon sea lice in the count data. The relative prevalence of L. salmonis

and C. elongatus in the attached stages of sea lice is not well known.

F IGURE 12 (a) Simulated infection with 11 chalimus subpopulations beginning at day 36 and spaced in time by 17 days (bottom panel)—as an
adult female can live up to 191 days and produce up to 11 pairs of egg strings that may lead to chalimus infections spaced on average by 17 days
at 7.2°C. These grow into adults in 51 days in this simulation with the first arriving at day 87 (upper panel). The standard deviation of the peaks
was small (0.5 days) to get distinct peaks. (b) Lagged correlations between the simulated data. They are centred around �51 days that shows the
strongest correlation as all the 11 adult peaks correlate with all the 11 chalimus peaks 51 days back in time. This corresponds to a lag of �3 in
units of the subpopulation spacing (17 days). The lowest correlations are found at �221 (36 � 257) and 119 (206 � 87) days as in plot (a) only
one peak at 257 can correlate with the one at 36 for lag �13, and only one peak at 87 can correlate with the one at 206 for lag 7. The number of
peaks that may correlate increases in steps of 1 for each lag from lag �13 (1) to lag �3 (11) and then decreases by 1 for each lag down to lag 7 (1)
[Colour figure can be viewed at wileyonlinelibrary.com]
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The prevalence of gravid C. elongatus in the Faroe Islands was

observed to be seasonal with low counts (0–0.5) in June–August,

moderate (0.5–1) in May and September and mostly higher (1–4) in

the remaining months January–April and October–December (�a

Norði et al., 2015).

In the present study, the counts of adult C. elongatus (both

sexes) was mostly low to moderate (<0.5) with maximum counts

(about 1) in October and December for site 1, 2010–11, after 4–

6 months at sea, respectively. The situation for site 1, 2012–13, was

similar with maximum counts (0.5–1) in October to March after 4–

9 months at sea. Similarly for site 2, 2012, the levels of C. elongatus

were mostly between 0 and 0.5 except in August (about 1) and

October (1–2) after 6–10 months at sea, respectively. For site 1,

2016–17, the levels of adult C. elongatus were high (2–4) in Septem-

ber to January after 2–6 months at sea and lower (<1) for the

remaining months.

As these levels of C. elongatus may distort the chalimus counts, a

modelling based on mobiles was implemented (Figures 3–6). The

model errors are fairly symmetrically distributed errors about mean 0

with a standard deviation of 0.13, and the maximum numerical error

0.33 lice/fish (Figure 6). The 95% prediction intervals for these

errors are about �0.3 lice/fish, and the maximum prediction errors

was estimated to �0.4 lice/fish.

A test performed for two farming sites to investigate sea lice

levels and survival factors at these sites predicted the adult sea lice

counts within an error of 0.2 lice/fish. The fitted scaling factor was

very different for these two sites using very different treatments,

indicating that the model may be useful both for predicting sea lice

levels and for investigating the effects of different treatments.

Simulating not only the general trends in sea lice counts, but also

the short-lived effect of the treatments (Figures 4–6) is an important

part of this study. The simulation of the treatments reproduced the

quick return of high sea-lice levels; explained by the low effect of

treatments on the young lice combined with their short development

times to adult.

Non-optimal timing of treatments could contribute to high sea

lice levels as well as the increased resistances to chemotherapeu-

tants that are suspected by the industry. A recently updated sea-lice

regulation for the Faroe Islands states that if suspected or confirmed

cases of resistance are observed the treatment has to be repeated

with a different method. However, no information about suspected

nor confirmed cases of resistance was available for this study. The

sea lice count data and the use of chemotherapeutants for each

company and farming sites in the Faroe Islands were not treated as

public information, and therefore, the farming sites and companies

were anonymized in this study. In addition to the mentioned update,

this will change so that future information regarding sea lice will be

public from 1 October 2017.

Traditionally, the treatments with chemotherapeutants against

sea lice in the Faroe Islands tend to be administered when the adult

sea lice counts reach the permitted limit of mean 1.5 (previously 2.0)

adult females/fish. At these high sea-lice levels, however, the lice

epidemic is very difficult to control. The lice counts for chalimus

(and mobiles) have typically also reached high levels at this point.

Consequently, treatments primarily targeting adult lice will be inef-

fective at reducing the overall population.

The second part of this study dealt with time-series analysis of

cross-correlations in the count data (Figures 7–12). The purpose was

F IGURE 13 (a) The reproduction rðafÞ � af for small values of af and asymptotically limited by rðafÞ.1 for increasing af (concave curve,
reproduced from Stormoen et al. (2013)), and the gain term rðafÞaf � a2f for small af, which is asymptotically limited by rðafÞ af.af for large af
(convex curve). If rðafÞaf [1, this turns up (amplifies) the number of released eggs per fish per day, and if rðafÞaf\1 this turns the number
down, as compared to the unamplified number of 32.8 eggs fish�1 day�1 for a reproductive adult female at 7.2°C. (b) The number
Se afð Þ � 32:8rðafÞaf of released lice eggs per fish per day [Colour figure can be viewed at wileyonlinelibrary.com]
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to check the development times used in the modelling of sea lice

levels derived from EWOS (Figure 2). The results of the time-series

analysis—when compared between sites—depended on the different

time periods covered by the count data, which probe different tem-

perature regimes. Therefore, a systematic study of cross-correlations

for subsets of the time series from four sites was applied to probe

the different temperature regimes. This revealed a close similarity

between the EWOS-development times and the lagged correlations

at lag �3 (Figure 7). Statistics of all the significant lagged correla-

tions revealed that lag �3 had the highest count for all four sites for

lags <0, but also revealed various differences between the lag statis-

tics (Figure 8).

This complexity is cautiously attributed to cross-correlations

between different populations of adult and chalimus lice leading to

the following relation for which lags should show correlations:

�3� g;7� g½ � for a given adult generation, Ag; g ¼ 0. . .10; produced

by self-infection of 11 chalimus subpopulations. This is lag �13 to 7

for all correlations between 11 chalimus and adult subpopulations

and the correlation at lag �3 in units of the subpopulation gap cor-

responds to the development time—illustrated by a simulation using

51 days for the development time and 17 days for the population

gap (Figure 12). Different distributions of lags may be expected

depending on which subpopulations of the chalimus and adult lice

dominate the lice counts. A continuous distribution of lags could

indicate strong self-infection dynamics (Figure 8, sites A and D),

while gaps in lags (Figure 8, sites B and C) could indicate missing

subpopulations (e.g., removed copepod populations by currents) and

less strong self-infection dynamics.

For the site covering the largest temperature range of cross-cor-

relations, the temperature-dependent development time was mod-

elled by the formula: D Tð Þ ¼ a1 T þ a2ð Þa3 ¼ 17;840 T þ 7:439ð Þ�2:128

(Figure 9a). From D Tð Þ, the first-order Taylor polynomial D1 Tð Þ was

derived at the mean temperature 8.5°C in the Faroe

Islands: D1 Tð Þ ¼ 105:2� 6:578T. D1 Tð Þ predicts a mean develop-

ment time of 49 days, as compared to the 45 days predicted by

Dcha Tð Þ ¼ 100:6� 6:507T from EWOS data. The slope of D1 Tð Þ and
Dcha Tð Þ are almost identical, keeping the difference of 4 days

between these two linear predictions constant. For the studied tem-

perature range of 7.8–10°C, there is not much difference in using

the linear approximation D1 Tð Þ as opposed to using the nonlinear

D Tð Þ formula, which seems less curved than the data (Figure 9a).

The inverted development times correspond to the arrival rate:

1/Development (Figure 9b). The mean rate over a year of about

0.021 lice/day is found at 8.5°C, which is the mean sea temperature

over a year. The maximum rate of nearly 0.024 lice/day is found at

10°C, which is about the highest obtainable mean temperature for

the time series. These rates are in good agreement with population

growth rates in the Faroe Islands derived by another method

(Patursson et al., 2017).

The size of the cross-correlations showed linear associations

between ccf-value and temperature (Figure 10a), and between ccf-

value and the rate 1/Development (Figure 10b). These are biologi-

cally meaningful associations as we expect shorter development

times and higher arrival rates at the highest temperatures (Figure 9a,

b), which both should contribute to stronger correlations with

increased temperature.

Finally, time series were compared for similar time periods for a

complete year at four sites (Figure 11). This probes the mean devel-

opment time over a year in the Faroe Islands, which was found to

be very similar: 49, 50, 51 and 52 days at these four sites, as

expected from the comparable temperatures at the sites in the same

year. Also, side-band gaps of about 15–16 days are observed in this

study (Figure 11) that possibly confirm the simulated correlations

between subpopulations (Figure 12). The size of the cross-correla-

tions was relatively similar as expected (from Figure 10a).

We conclude that (1) the similarity of the derived development

times as compared to the EWOS-development times, (2) the similar-

ity of the derived arrival rates as compared to population growth

rates (Patursson et al., 2017), (3) the biologically meaningful linear

associations for the size of the cross-correlations (Figure 10a,b) and

finally (4) the similarity of cross-correlations compared over a

complete year (Figure 11) all increase the reliability of these correla-

tions.

The time-series data were checked for autocorrelations, as spuri-

ous cross-correlations are known to happen in time-series analysis if

both time series are autocorrelated. In most cases, this was found

not to be the case. The exception was site C (Figures 7 and 8), for

which some of the subsets of the time series showed autocorrelation

in both time series. However, as the results for site C seemed

roughly similar to the other sites, for which autocorrelation was

mainly found in the adult series and not for the chalimus series, the

results for site C are also presented and estimated to be valid.

With the exception of using the development times derived from

EWOS data, the study was limited to what could be inferred and

modelled from the sea lice data. Any detailed information about sea-

lice treatments and the number of fish at each site was not con-

tained within the data.

The data from the lice surveys are less controlled and less well

described as compared to laboratory studies, and this may to some

extent complicate the conclusions derived. On the other hand, the

count data at salmon farms reflect conditions that may be difficult, if

not impossible to replicate under laboratory conditions. The data are

not gathered by the industry itself, but by Fiskaaling—the Aquacul-

ture Research Station of the Faroes. The data are not affected by

industrial interests, but the quality may to some extent vary due to

employees with different experiences in sea-lice counting.

For future control of sea-lice levels in the Faroe Islands, it must

be recognized that using a high sea-lice limit (1.5 adult females/fish)

is an ineffective approach, because at these levels of adult females,

the reproduction of offspring is likely to be highly effective as esti-

mated by the reproduction ratio: r 1:5ð Þ � 0:85 (Figure 13a); the

number of reproductive adult females per fish given by the gain

factor: r 1:5ð Þ1:5 � 1:28[1 (Figure 13a); the number of released

eggs per fish: Se 1:5ð Þ ¼ 32:8r 1:5ð Þ1:5 � 42 eggs fish�1 day�1 (Fig-

ure 13b); and the number of released eggs by a fish farm:

Fe 1:5; nð Þ ¼ nSe 1:5ð Þ � 42n eggs/day. This can lead both to a high
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self-infection at farms and to ocean-current spreading of the lice

infection to other farms; for example, for 1 million fish in a fish farm,

about 42 million eggs will be released per day.

The adult female lice count af should always be kept below

0.5 adult females/fish to take advantage of the quadratic term

rðafÞaf � a2f for small af in order to reduce Se afð Þ considerably below

Se 1ð Þ � 33 eggs fish�1 day�1—and not amplify it by 1.28 reproduc-

tive adult females per fish to Se 1:5ð Þ � 42 eggs�1 fish�1 day�1; for

example, for af ¼ 0:4; 0:2 and 0.1, Se afð Þ is reduced by 0.16, 0.04

and 0.01 reproductive adult females per fish to 5.2 (16%), 1.3 (4%)

and 0.33 (1%) eggs�1 fish�1 day�1, respectively, as compared to

Se 1ð Þ � 33 eggs fish�1 day�1 for one reproductive adult female per

fish.

The reproduction discussion and the quadratic dependence at

low densities is inspired by the modelling of lice reproduction for

farmed salmon with lice abundance between 0 and 2 adult females/

fish assuming that lice will stay with the same host in nature as

opposed to under laboratory conditions where lice may transfer

between hosts (Stormoen et al., 2013). Considering model limitations

this can to some extent distort the conclusions derived; for example,

if mobile males in fish farms can leave their hosts to seek out

females, this possibly leads to a higher reproduction at low densities.

At higher densities the lice fecundity—but not the lice survival—is

found to be reduced (Ugelvik, Skorping, & Mennerat, 2017). How-

ever, this effect is most important at high parasite loads, above 2–

4 female lice/fish, and before reaching these levels in fish farms, the

various treatments reduce the densities. Consequently, for the densi-

ties mostly below 2 females/fish in our study, we do not expect

much reduced fecundities with the lice loads.

Rather than only focusing on the lice limit af of the adult female,

a better approach to be considered for future lice protocols are set-

ting limits for the younger lice stages, because when adult females

are present, the situation quickly gets out of hand. Another approach

is also to limit the number of fish n at each farm in order to reduce

the number of sea lice released by the farm: Fe af; nð Þ ¼ nSe afð Þ.
Presently no limits are set for the attached or mobile stages of

lice in the Faroe Islands. High numbers of the younger lice stages

are warnings of high lice infection pressure, which are visible 1–

2 months before the adult lice levels start to rise. In the future, sea-

lice limits should also be based on the planktonic stages of sea lice

to account both for self-infection and for infection from other farms.

To account for the planktonic stages may not be practically feasi-

ble at the moment, but it should be when protocols for sea-lice

counting of the planktonic stages are better developed and auto-

mated. Improvements and automation of sea-lice counting of the

attached stages will improve the data quality to be used in the mod-

elling of the adult sea lice.

In conclusion, the adult sea-lice counts were modelled from the

attached stages of chalimus and mobile lice. It illustrated how the

chalimus infections developed into the accumulation of adult lice.

The ineffective treatments could be simulated and explained. Predic-

tions 1–2 months into the future were made. In a test for two farm-

ing sites the model predicted the adult sea lice counts within an

error of 0.2 adult females/fish, which was within the estimated 95%

prediction intervals of the errors (�0.3) and the estimated maximum

prediction errors (�0.4) for this test.

Time-series analysis on the sea-lice count data was used to

check the sea-lice development times and to probe the sea lice

dynamics in situ. From cross-correlations at lag �3 between the

chalimus and adult lice time series, the temperature-dependent

sea-lice development time was derived and inverted to find the

arrival rate (growth rate) of the adult lice from chalimus lice. The

size of the cross-correlations showed linear associations with both

temperature and the arrival rate. The different distributions of the

correlations for different lags seem consistent with correlations

between subpopulations of chalimus lice and adult lice. We sug-

gest that correlations at several lags with a continuous distribution

indicate strong self-infection dynamics, while correlations at few

lags and gaps in lags indicate missing subpopulations and less

strong self-infection dynamics.

Finally, we estimated the sea lice production from fish farms to

discuss and advise on approaches to control the sea-lice epidemics—

preferably by natural means. We recommend lower sea-lice limits

(<0.5 adult females/fish), and urge in particular to set limits for the

younger lice stages. As the number of fish in Faroese farms some-

times is larger than one million fish, a lice limit closer to 0 than to

0.5 adult females/fish is recommended together with setting limits

on the younger lice stages and on the numbers of fish at each farm.

Achieving such low lice levels may seem unrealistic when com-

pared to the relatively high sea lice levels in the Faroe Islands. One

of the arguments against setting very low lice limits was the poten-

tial impact on the industry, the fish and the environment from the

expected increased use of chemotherapeutants and other treatments

to keep the lice counts below a very low limit. Instead, a limit of 1.5

adult female/fish was set but enforcing this limit more strictly than

the old limit (2.0 adult female/fish); for example, if a farm has more

than 1.5 adult female/fish in three consecutive lice counts, it may be

required to harvest the fish within 2 months.

The new lice limit is a move in the right direction although proba-

bly an inadequate one, because controlling the sea lice epidemic by

accepting a limit that allows good reproductive conditions for the sea

lice seems even more unrealistic than enforcing a very low lice limit

that may break the reproductive cycle. Although fish in the worst

affected farms are harvested, they have already generated large

amounts of new sea lice larvae that may infect other farms. Lice limits

of 0.3–0.5 adult female/fish are enforced in Norway and although

both physical and environmental conditions are different, such levels

may also be enforced in the Faroe Islands. The lice situation in the

Faroe Islands is likely to improve in the future because the local aqua-

culture industry is continuously developing new and improved tech-

niques to keep the lice levels well below the imposed limit.

Reflecting on the modelling approach, what we have done is sim-

ilar to the modelling process described by Groner et al. (2016), as (1)

we visualized and described field data of sea lice counts motivated

by present phenomena in lice epidemics and we suggested hypothe-

sis of relationships in a statistical model; (2) we used the model on

988 | GISLASON



field data and inferred model parameters from past and present data

to investigate our hypothesis and explain relationships; (3) we used

model simulation and prediction of future lice counts to project sys-

tem behaviour—also after interventions with sea-lice treatments;

and (4) to some extent, we also performed model analysis by theo-

retical simulations to investigate and explore the mechanism and the

expected patterns explained by the model.

Compared to currently used approaches (Groner et al., 2016;

Hamilton-West et al., 2012; Heuch, Revie, & Gettinby, 2003; Revie,

Gettinby, Treasurer, & Rae, 2002; Revie, Gettinby, Treasurer, Rae,

& Clark, 2002; Revie, Robbins, Gettinby, Kelly, & Treasurer, 2005;

Rittenhouse et al., 2016), the emphasis in our approach was mainly

on the statistical modelling process using field data and to lesser

extent on mathematical derivations and theoretical simulations—

although two cases of simulations based on theoretical probabilities

of sea lice counts were presented that were meant to illustrate the

model principle (Figure 1) and the cross-correlation patterns

(Figure 12).

The work of Hamilton-West et al. (2012), Heuch et al. (2003)

and Revie, Gettinby, Treasurer, Rae, & Clark (2002) focused on large

epidemiological data sets and the seasonal changes in the count data

investigating correlations within and between lice stages and the

environmental parameters, and characterizing the lice burdens in dif-

ferent geographical regions.

The modelling work by Revie et al. (2005) and Rittenhouse et al.

(2016) has some resemblance to the modelling of chalimus and adult

lice in our study although the approach is different and based on a

deterministic host–parasite compartment model.

Most modelling approaches described by Groner et al. (2016)

are (1) either population growth models or host–parasite com-

partment models that are deterministic and solved by difference

or ordinary differential equations, respectively; (2) deterministic

advection–diffusion models solved by partial differential equa-

tions; (3) age-structured population growth models described by

difference equations that can include stochastic effects; (4) vari-

ous forms of statistical regression models describing random

effects; (5) statistical survival analysis based on survival and haz-

ard functions that are correlational; (6) stochastic population

growth models, for example, Ricker model; (7) individual-based

deterministic or stochastic computer models simulating interac-

tions of individuals within a system; and finally (8) numerically

solved ocean-circulation models simulating the environment and

spread of sea lice using hydrodynamic equations for transport

and diffusion.

Our model may possibly be classified as related to age-structured

population models and survival analysis. To our knowledge, no exist-

ing approach has modelled and predicted lice counts in fish farms,

lice treatments and development times in situ in similar detail as our

study, and we have not seen cross-correlation studies applied else-

where for determination of the sea lice development times or sub-

population gaps. From the presented study, we hope the methods

developed and analysis derived may help improve the understanding

and control of the sea-lice epidemics.
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APPENDIX A

MODEL CODE, PLOTS AND ERROR BARS

The R function lm() was used for the linear regression of the

EWOS-development times, and cumsum() for the cumulative sum

function applied to the mean sea lice counts.

Error bars for the mean counts were constructed as Poisson 95%

confidence intervals made with poisson.exact() from the R

package exactci. In this case, the Poisson distribution was used

for the confidence intervals rather than the normal approximation,

because the mean counts of sea lice are typically small numbers

much below 10. Especially for mean counts below 1 there is a clear

difference between the normal 95% confidence intervals (symmetric)

and the Poisson 95% confidence intervals (asymmetric, right skewed)

for low counts.

As previously stated, we construct the model estimate m tið Þ for

the adult lice a tið Þ by a cumulative sum of the past chalimus lice

c tj
� �

for the counting dates tj in the interval ½t1; tk\ti�.
To estimate confidence intervals as error bars for the model value

m tið Þ, we consider k chalimus distributions of counts c1 t1ð Þ, . . .,

ck tkð Þ used to predict m tið Þ at ti. We assume these chalimus distribu-

tions to be independent and Poisson distributed with mean l1 t1ð Þ, . . .,
lk tkð Þ. Then, from probability theory, the sum: c1 t1ð Þ þ . . .þ ck tkð Þ has
a Poisson distribution with mean l1 t1ð Þ þ . . .þ lk tkð Þ (Degroot &

Schervish, 2002). It follows that we can construct Poisson 95% confi-

dence intervals for the model estimate m tið Þ like we do for the mean

counts of adult lice. To avoid cluttering of plots, however, we do not

plot the error bars of the model, but only for the lice counts, because

in most cases the model values and error bars (not shown) are similar

to the counts and error bars for the adult lice.

We note that the assumption of independent chalimus distribu-

tions may not strictly hold in all cases, for example, for very short

counting intervals (<14 days) in which multiple counts may be taken

from the same distribution, or when different chalimus distributions

are correlated. This can sometimes happen for sites with strong self-

infection dynamics that generate and self-infect with multiple series

of chalimus distributions in one salmon-production cycle.

The modelling was performed with R/RStudio and plots made

with the ggplot2 package. The R code to find tk\ti for each tiand

all the other modelling code from data import to model calculations

and plotting were implemented in RStudio following the principles

of reproducible research. This was performed using R Markdown

documents that intervene marked up text (R Markdown or Latex),
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R code and output to be knitted to HTML, pdf or Word formats (Xie,

2015). At the time of writing, the modelling code has been further

developed into a parameterized R Markdown report with a user

interface to set the model input parameters.

APPENDIX B

THE INHERENT VARIABILITY OF THE
DEVELOPMENT TIMES

The purpose of using tk\ti is to give all the chalimus lice at count

date tk enough time to develop into adult lice at count date ti. Ini-

tially, we used tk ¼ ti � ld, where ld is the mean development time

from tk to ti. However, in some cases this tends to underestimate

the speed of the sea lice development. This is most likely because

about half of the sea lice in the chalimus distribution at each tk can

develop faster than the mean development time ld and should also

be included in the cumulative sum.

Therefore, we set tk ¼ ti � dfld � sfsddð Þ, where df is a factor

that may be used to adjust the development times if they are inac-

curately estimated from the linear regression formula, and/or from

using inaccurate model temperatures. The sf factor is inspired by the

normal distribution, because nearly 100% of normal data are within

�3 SD (sdd) from the mean (ldÞ. Assuming that the development

times are correctly estimated (df ¼ 1) and that they are normally dis-

tributed around ld, the subtraction of three standard deviations:

tk ¼ ti � ld � 3sddð Þ should ensure that all the chalimus lice—which

have enough time to develop into adult lice—are included in the

cumulative sum. This procedure moves tk closer to ti for each ti and

thereby allows more chalimus data in the model prediction m tið Þ for

the adult lice.

To find sdd, when we in fact have no data on the inherent vari-

ability of the development times, we use the standard deviation for-

mula: sdd ¼ ffiffiffiffiffi
ld

p
, justified by the normal approximation to the

Poisson distribution, which in practice works when the mean is

greater than 10 (Peacock & Peacock, 2011). This is valid for ld as

the mean development times are larger than 10 days.

We note that if we in one approach keep df fixed at df ¼ 1 and

only change sf in discrete steps, this is equivalent to, in another

approach, to only use a discrete scaling factor of df ¼ 1� ðsf= ffiffiffiffiffi
ld

p Þ
as seen from solving: leff ¼ dfld ¼ ld � sf

ffiffiffiffiffi
ld

p
; where we introduced

an effective development leff adjusted for variability.

That gives df: 1, 0.86, 0.72 or 0.58 for sf: 0, 1, 2 or 3 and

ld ¼ 51: Similarly, using df ¼ 1 and negative sf: �1, �2 or �3 in

one approach for ld ¼ 51 would correspond to only using df: 1.14,

1.28 or 1.42 in the other approach. For the modelling from mobiles,

df ¼ 1� ðsf= ffiffiffiffiffi
ld

p Þ ¼ 1� 0:2 sf for ld ¼ 25.

In the modelling, we either kept df ¼ 1 fixed and changed sf in

discrete steps (�3 to 3), also allowing negative values to account for

slower development than expected, or we set sf ¼ 0 and changed df

continuously. The introduction of the standard deviation factor could

have been omitted as it is not strictly necessary, but its use may give

a better intuition for the variability of the development.

APPENDIX C

THE TIME-SERIES CODE AND METHODS

For a data set lice from a site containing the count dates date

and the lice counts chalimus and adult, the time-series objects

tschalimus and tsadult are created in R/RStudio by xts

(lice$chalimus, lice$date) and xts(lice$adult, lice$

date) (Teetor, 2011). Then, the cross-correlation object ccfobj is

created by ccf(drop(tschalimus), drop(tsadult),

plot = FALSE). Here, drop is used to get rid of the matrix dimen-

sion of the xts objects, and plot = FALSE to delay plotting. The

ccfobj contains a list of the lagged correlations ccfobj$acf com-

puted at both negative and positive values of ccfobj$lag, and

the number of data points used is ccfobj$n.used. The 95% con-

fidence limits �ciline for significant correlations are based on the

normal distribution theory confidence limits � 1:96ffiffi
n

p (Shumway & Stof-

fer, 2011) for filtering a signal from white noise around mean 0:

�ciline � �1.96/sqrt(ccfobj$n.used).

For a given pair of time series at one site, tschalimus and

tsadult, with the corresponding cross-correlation object ccfobj,

we loop over the ccfobj object and compute the lag and lead time

differences in days at each lag: time_diff=lice$date – lag

(lice$date, abs(ccfobj$lag)), and time_diff = lice$

date – lead(lice$date, ccfobj$lag) for negative and positive

values of ccfobj$lag, respectively. Negative or positive values of

ccfobj$lag mean, respectively, that the time series tschalimus

is lagged or leads the time series tsadult.

After removing the text attribute “Time differences in days” from

the time_diff object using unclass(time_diff), a t test

(t.test) is applied using broom::tidy(t.test (time_-

diff)). The broom::tidy call serves to produce a nicely format-

ted table output (one row) from the t test, while the purpose of

using this test here is to compute the mean time difference together

with the standard output, which includes the confidence limits for

the mean.

When the cross-correlations are finally plotted, the mean time

difference is rounded to whole days and used to label only those

lags for which significant correlations exists. For this purpose, we

save the output of the t test for each lag together with the cross-

correlation object ccfobj and the cross-correlation confidence limit

ciline.

Using R code, we generate all possible continuous subsets of

the time series—only limited by a minimum length of 10 data

points for each time series. Among the outputs from the previously

described t test is the degree of freedom parameter, which for

the t test is one less than the number of time differences used to

compute the mean time difference. To ensure that the shortest

time series are not used for evaluating large lags, we filter the data
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to only use the cross-correlations with parameter at least 8,

which means that at least nine time differences are used in the t

test. For example, at lag �3 the minimum length of the time series

used will be 12 data points, as time_diff will have 12 values at

lag 0, but only nine values at lag �3, when the three na-values are

excluded.

This ensures a reasonable accuracy of the mean time differences.

To give an example, one site showed cross-correlations larger than

ciline at lag �3 in 96 subsets of the time series. For this site, the

summary of the error margin (conf.high – conf.low)/2 in days

is 2.6 (Min.), 4.8 (1st Qu.), 6.0 (Median), 6.2 (Mean), 7.3 (3rd Qu.)

and 11 (Max), and the summary of the lengths of the 96 subsets of

the time series is 12 (Min.), 16 (1st Qu.), 20 (Median), 20 (Mean),

24 (3rd Qu.) and 30 (Max).

For each subset of the time series, we also find the mean tem-

perature from the model temperatures used in Nesv�ık, Faroe Islands.

As the model temperatures were measured on a daily basis, we use

the mean temperature between the minimum and maximum date in

each subset of the time series. The length of the time-series subsets

is therefore not an issue for the temperatures, and in the previous

example, the summary of the number of days used from the temper-

ature profile corresponding to the 96 subsets of time series are 156

(Min.), 244 (1st Qu.), 313 (Median), 323 (Mean), 398 (3rd Qu.) and

544 (Max). This shows that the 96 subsets are between 5 and

18 months in length.

Simulations of probabilities pchalimus and padult for the

chalimus and adult subpopulations (Figures 1 and 12) were based on

mixed normal distributions generated by dnorMix(x, obj) from

the nor1mix package where x is a vector of time (days) to calculate

the probabilities and obj is generated by norMix(mu, sigma) for

given vectors of means (mu) and standard deviations (sigma)—using

equal mixture proportions for the distributions. Cumulative probabili-

ties for the four simulated subpopulations (Figure 1) where com-

puted with pnorMix(q, obj) where q is a vector of quantiles

(days).

Time series tspchalimus and tspadult for the 11 simulated

population probabilities used to compute cross-correlations (Fig-

ure 12b) were obtained similarly as for the lice counts using xts

(pchalimus, date) and xts(padult, date). Similarly, the

cross-correlation object ccfobj was created by ccf(drop

(tspchalimus), drop(tspadult), plot = FALSE) and then

used to plot the cross-correlations with the ggplot2 package. The

relatively low confidence limit of about � 0.12 should not be exces-

sively interpreted as it changes with the number of data points in

the simulation and in the denominator of �ð1:96= ffiffiffi
n

p Þ (Figure 12b;

n ¼ 271).

The counts and number of lags with significant correlations (Fig-

ure 8) is not fully understood. However, one possible suggestion is

that the correlations at different lags are caused by correlations of

the adult lice counts with series of subpopulations of chalimus lice

generated by the 10–11 egg strings laid by an adult female in its life-

time of about 191 days. Consequently, for each adult female popula-

tion, a series of subpopulations of chalimus lice will self-infect the

salmon fish separated on average by about 17–19 days. Starting

with an adult population created by a current born infection, this

adult population will start to produce series of chalimus infections.

This can explain the positive lags. Then the attached lice grow into

adult lice, explaining the correlations at negative lags. Finally, correla-

tions at both positive and negative lags can be observed, as the chal-

imus lice produce adult lice, and vice versa.

Let us consider a numerical example following this line of reason-

ing. At the mean temperature in the Faroe Islands, we assume that

the chalimus lice grow into adults in 51 days and adults produce

chalimus in 36 days. Starting with an adult female at time 0, the ser-

ies of 11 chalimus populations will show up at 36, 53, 70, 87, 104,

121, 138, 155, 172, 189 and 206 days, respectively, if we assume

they are spaced in time by 17 days (Figure 12a, bottom panel). Note

that a new generation of adult females will show up at

36 + 51 = 87 days (Figure 12a, top panel). Therefore, the adult

females at day 87 generated by the first subpopulation of chalimus

at day 36 will correlate for lag �3 at 87 � 36 = 51 days, but also

correlate with the next chalimus generation for lag �2 at

87 � 53 = 34 days, to the third for lag �1 at 87 � 70 = 17 days

and to the fourth for lag 0 at 87 � 87 = 0 days. The remaining chal-

imus subpopulations will lead to positive lags 1–7 with respect to

the first subpopulation of adult females at day 87. In this case, we

consequently expect correlations for the lags �3 to 7. This is similar

to what we observed for site A, in which lags �3 to 6 were

observed to have significant correlations (Figure 8).

However, complexity arises as the 11 chalimus populations will

generate 11 adult populations, which then also start to generate new

series of chalimus populations. To simplify things, let us only consider

the first 11 chalimus subpopulations that generate 11 new adult popu-

lations, and this time, look at the next adult generation that shows up

at day 104 (87 + 17) (Figure 12a, top panel). This adult population will

correlate with the first chalimus population for lag �4 at 104 � 36 =

68 days and with the next for lag �3 at 104 � 53 = 51 days, and so

on, leading to correlations for lags �4 to 6.

A similar analysis of the remaining subpopulations leads to the

following relation for which lags should show correlations: [�3 � g;

7 � g]. for a given adult generation, Ag; g ¼ 0. . .10; produced by

self-infection of 11 chalimus subpopulations. This predicts correla-

tions at lags �3 to 7 for the first generation (g ¼ 0), �4 to 6 for the

next generation (g ¼ 1), �5 to 5 for the third (g ¼ 2) and �7 to 3

for the fourth (g ¼ 3), �8 to 2 for the fifth (g ¼ 4) and so on until

the extreme �13 to �3 (g ¼ 10). Note that the distribution of lags

shifts towards negative lags with the generation number and is only

symmetric (�5 to 5) for the third (g ¼ 2). Note that the asymmetric

distributions of lags �3 to 7 and �7 to 3 are similar to the observed

lags for site A and C, respectively, while the symmetric distribution

(�5 to 5) is fairly similar to site B (Figure 8).

The possible correlations when considering all the 11 adult and

chalimus subpopulations are from lag �13 to 7 corresponding to

�221 to 119 days centred at �51 days (lag �3), which together

with its closest neighbours has the strongest correlation (Figure 12b),

and represents the development time of 51 days used in the
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simulation (Figure 12a). The gaps of 17 days between the side-band

correlations (Figure 12b) represent the gaps of 17 days between the

subpopulations used in the simulation (Figure 12a). Side-band gaps

of about 15–16 days are observed in this study (Figure 11).

From the presented reasoning, different distributions of signifi-

cant lags are to be expected depending on which subpopulations of

the chalimus and adult lice dominate the lice counts, because not all

11 copepod populations are likely to self-infect the salmon with

attached chalimus lice, and not all grow into adults. A continuous

distribution of significant lags could indicate strong self-infection

dynamics (Figure 8, sites A and D), while gaps in lags (Figure 8, sites

B and C) could indicate missing subpopulations (e.g., removed cope-

pod populations by currents) and less strong self-infection dynamics.

APPENDIX D

THE TEMPERATURE-DEPENDENCE
PARAMETERS

To find the parameters ða1; a2;a3Þ, we first note that

log D Tð Þð Þ ¼ log a1ð Þ þ a3 log T þ a2ð Þ. Therefore, a plot of log D Tð Þð Þ

versus log T þ a2ð Þ should be linear for a given a2. Inspired by R for

Data Science (Wickham & Grolemund, 2017), we define the model

function (the logarithmic form, in our case) and a standard distance

measure between our data and our model. We then applied best

parameter search using optim() with a guess. Initially, we only

guessed one of the parameters a2, until we got a fair fit of

log D Tð Þð Þ versus log T þ a2ð Þ. We subsequently used the resulting

linear regression parameters to assist the guessing of the two

remaining parameters, which we fed into optim() together with

our best guess of a2.
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