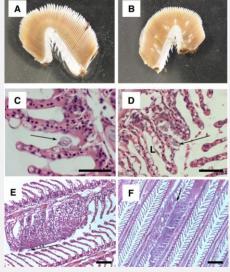
Biomarkørar frá táknu svabum

- ikki deyðiligt amboð til forsøgn av fiska heilsuni -

- Kim Steve Gerlach Bergkvist, PhD -


Vitan til varandi aling 2021

Current monitoring tool for gill health

- Histology (slow, expensive and time-consuming)
- PCR Present/absent of infection agent
- Geared toward late-stage inflammation and damage

Gills AGD-affected salmon

- We will develop an early warning tool
- Biomarkers from salmon epithelia cells first line of defence
 - Quantitative/objective tools directly monitor immune function/fish health
- Sampling should be Non-lethal
 - The 3 Rs science are guiding principle for more ethical use of animals in testing

Chosen biomarkers

- Mucins
 - Glycosylated proteins produced by epithelial cells
 - Humans: biomarkers for several diseases including cancer and airways disease

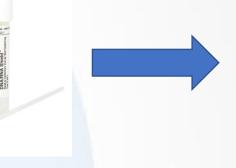
- Immune related response:
 - RIG family (receptors are key players sensors of virus infection, recognize diff. viruses)
 - Interferons (signal molecules in response to virus infection)
 - Cytokines (broad group of signal proteins stimulate the immune system)
- Scientific validated biomarkers in salmon (controlled experimental set-up)
- Tested their expression in different stressors in salmon
 - Handling stress (3h and 24h)
 - Exposed to AGD
 - Exposed to different viruses (IPNV, ISAV, SAV)
- Salmon tissue:
 - Gill tissue
 - Cell lines (head kidney leukocytes)

Description of biomarkers

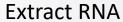
Description	Gene name	Tissue	Note
Mucins	muc2.1	Gills	- Secreted mucin, increase after acute handling stress, up-regulated in 3h and 24h
	mucin 2 mucin 5 mucin 18	Gills Gills Gills	- Mucin genes showed most variability when exposed to AGD ^b and linked to disease severity
Immune genes:			
RIG family	RIG-I	TO cells	- Genes were up-regulated upon virus infection in
	LGP2	TO cells	general
Interferons	IFNa	TO cells	- Up-regulated upon IPNV ^c and ISAV ^d infection
	TNF-a1	TO cells	
	IFNb	TO cells	- Up-regulated upon SAVe infection
Cytokines	IL-12	TO cells	
-	interleukin 4/13a	Gills	- Genes showed most variability when exposed to
	interleukin 4/13b2	Gills	AGD and linked to disease severity

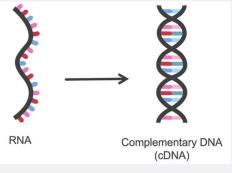
Description of the chosen biomarkers. ^aTO cells are derived from Atlantic salmon head kidney leucocytes, ^bAmoebic Gill Disease (AGD), ^cInfectious Pancreatic Necrosis Virus (IPNV), ^dInfectious Salmon Anaemia Virus (ISAV) and ^cSalmonid Alphavirus (SAV).

References:

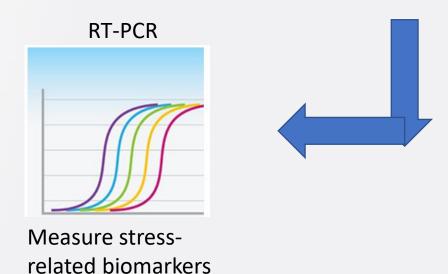

- 1. Marcos-López, M. *et al.* Gene expression analysis of Atlantic salmon gills reveals mucin 5 and interleukin 4/13 as key molecules during amoebic gill disease. *Sci. Rep.* **8**, 1–15 (2018).
- 2. Sveen, L. R., Grammes, F. T., Ytteborg, E., Takle, H. & Jørgensen, S. M. Genome-wide analysis of atlantic salmon (Salmo salar) mucin genes and their role as biomarkers. *PLoS One* **12**, 1–15 (2017).
- 3. Nerbøvik, I. K. G. *et al.* Molecular cloning of MDA5, phylogenetic analysis of RIG-I-like receptors (RLRs) and differential gene expression of RLRs, interferons and proinflammatory cytokines after in vitro challenge with IPNV, ISAV and SAV in the salmonid cell line TO. *J. Fish Dis.* **40**, 1529–1544 (2017).

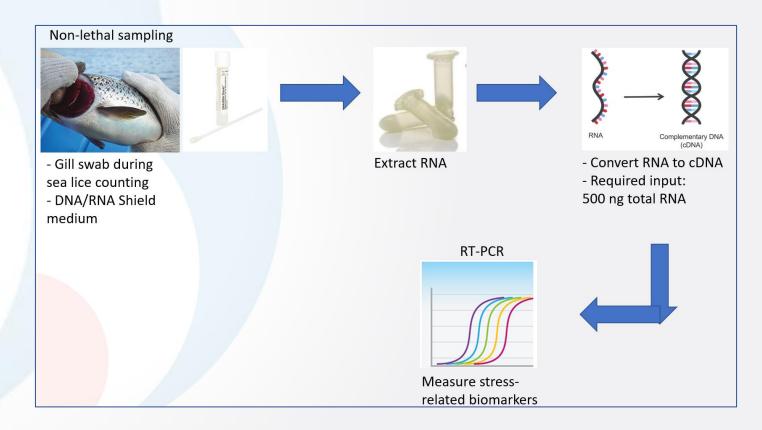
Sampling/method


Non-lethal sampling



Gill swab duringsea lice countingDNA/RNA Shieldmedium





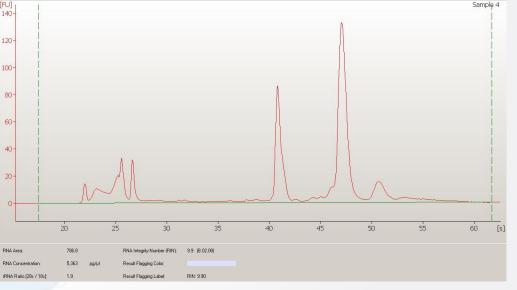
- Convert RNA to cDNA
- Required input: 500 ng total RNA

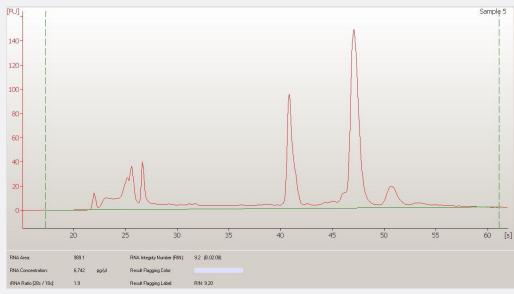
Questions to address in this pilot study:

- 1) Do we get enough material from gill swabs (RNA)?
- 2) Is the quality sufficient for gene expression analysis (PCR)?
- 3) Can we detect the chosen biomarkers (genes) via PCR?

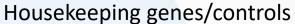
- 1) Do we get enough material from gill swabs (RNA)?
 - The biomarkers has been validated in gill tissue and cell lines from salmon
 - 500 ng total required for cDNA synthesis

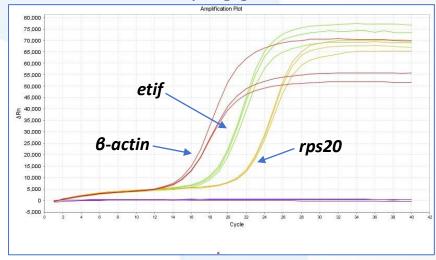
Results:

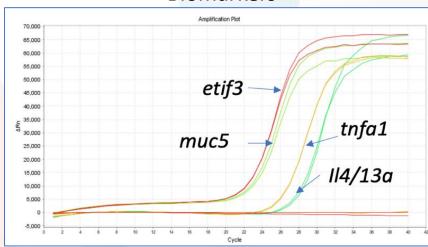

Qubit fluorometer: RNA quantity = $16 - 32 \mu g$ (sufficient for cDNA synthesis)


- 2) Is the quality sufficient for gene expression analysis (PCR)?
 - High quality RNA is important for gene expression analysis

Results:

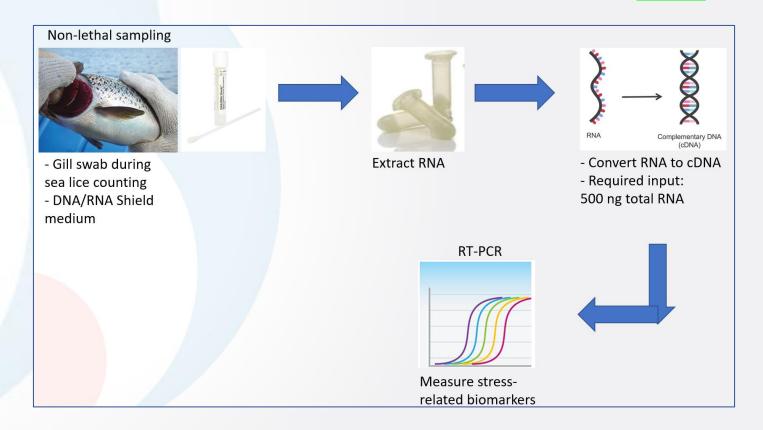

RIN number: 9.2 – 9.9 (highly intact RNA from gill swabs)





3) Can we detect the chosen biomarkers (genes) via PCR?

Biomarkers



Results:

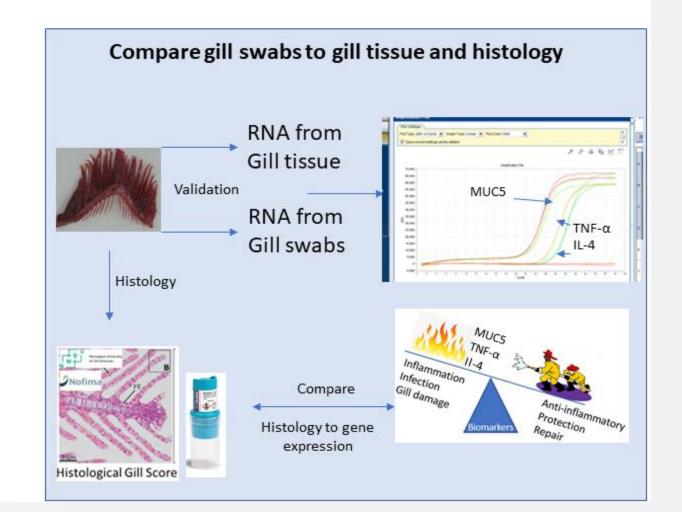
- Housekeeping and target genes are detectable and amplify well
- This pilot study also demonstrate the feasibility in gill swabs

Questions to address in this pilot study:

- 1) Do we get enough material from gill swabs (RNA)? yes
- 2) Is the quality sufficient for gene expression analysis (PCR)? yes
- 3) Can we detect the chosen biomarkers (genes) via PCR? yes

Project plan

- WP1
 - Validate gill swabs vs gill tissue
 - Correlate molecular and histology signs of gill inflammation


- WP2
 - Validate the biomarker panel during an at-sea production cycle

Sea Transfer Slaughter

Sampling once at any point during at-sea production

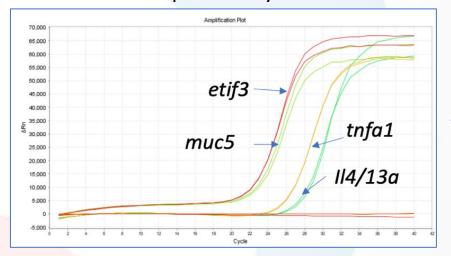
Sampling during lice counting

Sea transfer Slaughter

On-site sampling performed during lice counting Fish health dept Gill Swab Routine Gill Check

Tool for monitoring gill health

Non-lethal


Early warning of gill disease

Cutting-edge welfare indicator

Expected results/Perspectives

Biomarker expression from gill swabs pilot study

Animal-based welfare indicators

Parameter	Reporting
Sea lice load	Sea lice number: Chalimus stages (L. salmonis and C. elongatus)
	- L. salmonis (pre-adult- and adult stages)
	- C. elongatus (adult stage)
AGD gill score	0 to 5
Other gill abnormities	0 to 5
Condition factor (K)	Weight and length of the fish
Scale loss/skin damage	0 to 3

Table 2. Direct and animal-based welfare indicators describing the appearance of the individual fish. Condition factor is calculated from the weight and length of the fish.

Environmental data	Operational data
- water temperature	- mortality
- salinity	- growth rate
- water current	- feed up-take
- meteorology	- presence of pathogens
- dissolved oxygen	- historical data on delousing
- harmful microalgae blooms	- vaccination history

- Develop a routine monitoring tool for fish health
 - Reports to the industry
- Increase knowledge immune system in fish

Thank you for your attention

Others participants in project:

- Hiddenfjord/Luna

- Alf Seljenes Dalum, Histopathologist at PatoGen, Norway